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Abstract

Among T 7/� orbifold compactifications of M-theory, we examine models
containing the particle physics standard model in four-dimensional spacetimes,
which appear as fixed subspaces of the 10-dimensional spacetimes at each
end of the interval, I 1 � S1/Z2, spanning the 11th dimension. Using the
Z7 projection to break the E8 gauge symmetry in each of the four-planes
and a limiting relation to the corresponding heterotic string compactifications,
we discuss the restrictions on the possible resulting gauge field and matter
spectra. In particular, some of the states are non-local: they connect two four-
dimensional worlds across the 11th dimension. We illustrate our programmable
calculations of the matter field spectrum, including the anomalous U(1) factor
which satisfies a universal Green–Schwarz relation, discuss a Dynkin diagram
technique to showcase a model with SU(3)×SU(2)×U(1)5 gauge symmetry,
and discuss generalizations to higher order orbifolds.

PACS number: 11.25.Mj

1. Introduction

A strong coupling limit of type IIA string theory is dual to a theory, the low-energy limit
of which exhibits a target space with a 11-dimensional Lorentz invariance [1–4]; this still
rather mysterious extension of string theory is known as M-theory. Unlike in string theory,
not enough is known about the underlying dynamics of M-theory, so that much of the analysis
relies on this low energy limit, which includes the 11-dimensional N = 1 supergravity. In turn,
11 is the maximum number of spacetime dimensions for a consistent locally supersymmetric
theory, and has been studied independently of relations to string theory. The basic five different
string theories and the 11-dimensional supergravity are in fact all regarded as six different
special locations (limits) in the moduli space of this unifying M-theory [3, 4].

Just as type IIA string theory in 10-dimensional spacetime is related to N = 1 supergravity
in R

1,9 × S1, the E8 × E8 heterotic string theory is related to supergravity in R
1,9 × I 1 [5]. In

this latter type of models, the 11th dimension spans the interval I 1 � S1/Z2, where Z2 is the
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parity reflection. The boundary of this 11-dimensional spacetime thus consists of two parallel
ten-planes, located at the two orbifold singularities: the end points of the 11th dimension.
Local anomaly cancellation enforces the emergence of an E8 gauge symmetry in each of the
two boundary ten-planes.

Within M-theory compactifications of the last seven (spatial) dimensions of the R
1,10

spacetime on a T 7/� orbifold1, where T 7 = R
7/� and � ⊂ Aut(�), we explore the cases

where � is a finite Abelian group of rotations in the first six dimensions of T7, twisted by
the parity reflection in the last, 11th dimension. In general, all such actions fix entire copies
of R

1,3 located at certain p-dimensional ‘planes’, P� ⊂ T 7, fixed by the � action. Each
such P� is then a singularity in T 7/�, and defines a special (1, 3+p)-dimensional spacetime
(R1,3 × P�) ⊂ (R1,10/�)/�, called ‘orbifold fixed plane’ in [6, 7]. There, several models
were constructed using T 6/(Z2 × Z2) × (S1/Z2) and T 6/(Z2 × Z3) × (S1/Z2) orbifolds, and
the four-dimensional spacetime occurs where dim(P∗) = 0.

In principle, the physics in these orbifold fixed planes are beset with gravitational and
gauge anomalies, carried by Weyl (chiral) fermions. Thus, cancellation of these anomalies
plays a crucial role in studying M-theory phenomenology [8]. As there can be no Weyl
fermions in odd-dimensional spacetimes, odd-dimensional orbifold fixed planes can have no
such anomaly. In turn, in 4k+2 dimensions, k = 0, 1, 2, . . . , there are purely gravitational
anomalies due to spin-1/2 and spin-3/2 Weyl fermions. Also, in 4k+2 dimensions, gauge
anomaly may arise only if the left- and right-handed fermions transform differently under the
gauge group.

Finally, in four-dimensional spacetime, there can be no gravitational anomaly and the
gauge anomaly is generated by Weyl fermions transforming in complex representations. A
cancellation of these anomalies is necessary for the quantum theory to be well defined, and
leads to restrictions on the allowed gauge group representations of the theory. Generally, the
four-dimensional gauge group contains one or more U(1) factors, each of which may receive
non-vanishing contributions to its anomaly. A basis change easily renders all but one of these
U(1) factors anomaly-free, but the anomalies in the last U(1) factor may in general only be
canceled by a four-dimensional counterpart of the Green–Schwarz mechanism [9].

The massless spectra in such orbifold models are closely related to the corresponding
models found by compactifying the E8 × E8 heterotic string theory on T 6/ZN orbifolds [10]
(see figure 1). M-theory compactified on S1/Z2 has two fixed ten-plane boundaries with a
chiral N = 1, E8 gauge vector supermultiplet in each of them. In the x11 → 0 limit, this
11-dimensional spacetime limits to a 10-dimensional spacetime—the two boundary ten-plane
spacetimes coalescing—together with their separate copies of the E8 gauge bundle. Without
going into the details of the limiting dynamics, the massless spectrum in this limit is clearly
identifiable with that in the E8 × E8 heterotic string theory. The massless spectra of the well-
studied four-dimensional E8 × E8 heterotic string orbifold models then ought to agree with
those in the x11 → 0 limit of the corresponding orbifold compactifications of the M-theory.

We will see that this limiting behavior2 is usefully restrictive, although certainly not
sufficient to determine the complete spectrum. In turn, note that anomaly cancellations alone
can similarly not rule out the occurrence of arbitrary multiples of collections of massless fields
within which all anomalies happen to cancel. In this sense, the analysis along the lines of the
work in [6, 7] provides a minimal consistent matter spectrum. This is quite familiar from the
study of superstring compactification, where it is known that the determination of the exact

1 The torus-compactification R
1,9 × (S1/Z2) → R

1,3 × T 6 × (S1/Z2) is seen to result in R
1,3 × T 7/Z2, where

T 6 × S1 = T 7 and the Z2 parity reflection acts only on the last, 11th coordinate.
2 The massless spectra obtained via this limit are consistent with known anomaly cancellation results.
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M-theory/ 2

x11 → 0
E8 × E8 heterotic string theory

N N
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x11 → 0

Known Models

Figure 1. Relations between M-theory and E8 × E8 heterotic string theory orbifold models.

Table 1. The action of the orbifold group Z7 × Z2 on the seven compact coordinates. The entries
in the middle column are the fractions of 2π i phases; e.g., the entries in the last row signify the
action αβ : (z1, z2, z3, x11) → (e2π i/7z1, e4π i/7z2, e−6π i/7z3,−x11).

Orbifold Group Number and dimensions
group element z1 z2 z3 x11 of ‘hyperplanes’

α 0 0 0 − two ten-planes
Z7 × Z2 β 1/7 2/7 −3/7 + seven five-planes

αβ 1/7 2/7 −3/7 − 14 four-planes

number of chargeless massless states requires a considerably detailed knowledge about the
compactification than is the case with charged matter [3, 4, 11].

By the same token, and without delving into the dynamics details of the x11 → 0
limit, we can then specify a minimal consistent massless matter spectrum, to be refined
subsequently. Nevertheless, already in its present form, this approach provides results that are
both complementary to those in the literature and phenomenologically interesting.

2. Orbifold geometry and anomalies

The compactified space has the structure of a T 7/� � (T 6/ZN) × (S1/Z2) orbifold. We take
the circle, S1 to be the x11 direction and the coordinates of T6 will be specified by z1, z2 and z3

with real coordinates x5, . . . , x10; for example, we may identify z1 = x5 + ix6, z2 = x7 + ix8,
z3 = x9 + ix10.

2.1. Geometry

From now on, we focus on Z7: table 1 specifies the � = Z7 × Z2 quotient group action by
listing the fractional multiplets of 2π i phases of the first six coordinates of T7 and the sign of
the last coordinate, x11. Z2 acts on x11 as a parity reflection and leaves invariant two ten-planes
at the orbifold singularities; these are shown horizontally in figure 2.

The action of Z7 on the compact coordinates is chosen so as to preserve N = 1
supersymmetry. It leaves invariant seven five-planes (shown vertically in figure 2), spanned
by x11 and x1, . . . , x4, the latter of which are suppressed in figure 2. The action of Z7 × Z2

leaves invariant 14 four-planes which lie at the intersection of ten-planes and five-planes and
represented by dots in figure 2.

In table 1, we have omitted the other elements of the orbifold group because their fixed
point sets are identical to those of either β or αβ. Elements β2, β3, β4, β5 and β6 are in this
sense equivalent to β, and the elements αβ2, αβ3, αβ4, αβ5 and αβ6 are equivalent to αβ. The
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x11

x5, · · · , x10
x5, · · · , x10

compact, small

Figure 2. Intersecting planes in the T 6/Z7 × S1/Z2 orbifold: with x5, . . . , x10 shown unraveled
in the sketch on the left-hand side, and curled up on the right-hand side.

fixed-point sets are called ‘hyperplanes’ following the nomenclature in the literature, but we
note that such ‘p-planes’ are in the final orbifold non-compact only in the first four dimensions,
x1, . . . , x4 (dots in figure 2), and compact in the rest: x11 is always restricted to the interval
I 1 = S1/Z2 (vertical in figure 2), and x5, . . . , x10 are subject to the twisted periodic boundary
conditions of (R6/�)/Z7, as sketched by the ovals in figure 2.

2.2. Anomalies

On the 10-dimensional plane the chiral projection of the 11-dimensional supergravity induces
gravitational anomaly. To cancel this anomaly we need to introduce the Yang–Mills type of
gauge fields which further induce gauge and mixed type of anomalies. The presence of some
topological terms in the 11-dimensional supergravity action induces additional anomalies
known as ‘inflow’ anomalies. Cancellation of these gravitational, quantum and inflow
anomalies require a separate complement of E8 gauge fields in each of the two ten-plane
boundary spacetimes [5].

As indicated in table 1, within the 11-dimensional bulk and the 10-dimensional boundary,
the next �-fixed structure consists of five-planes. This situation is the key difference between
our Z7-orbifolds and the models studied earlier [6, 7, 12]. Therein, each model contained
intermediate �-fixed structures between the 10-dimensional and the 5-dimensional one. Those
intermediate structures—most notably the �-fixed six-planes—provided pivotal information
by way of anomaly cancellation requirements [13–15]. Herein, there are no such intermediate
structures and therefore no additional constraints enforced by anomaly cancellation in these
intermediate �-fixed structures.

So, in the ‘next dimension down’, we have five-planes, shown as vertical lines in figure 2.
One of their five dimensions is spanned by x11, and their remaining four dimensions, collapsed
to the dots in figure 2, lie in each of the two 10-dimensional boundary components of the
original M-theory.

Since odd-dimensional spacetimes cannot have Weyl fermions, and it is only such fermions
that can carry the anomaly, the matter content within the five-planes is anomaly-free. However,
we will see in the following sections that we must nevertheless introduce some states that extend
through the five-planes in order to cancel anomalies on their boundary four-planes.

3. Z7 invariant groups

On a given four-plane within the boundary ten-plane, the E8 gauge group breaks down to
some subgroup G4. The breaking depends on the embedding of the Z7 action within the E8

group. The fundamental irreducible representation 248 of E8, which has rank 8 is also its
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adjoint representation. Using MathematicaTM programs, we construct all the positive 120
roots of E8 from the highest root [0, 0, 0, 0, 0, 0, 1, 0] and 428 eight-component Z7 vectors
with coordinates taking values from among

{
1
7 , 2

7 , 3
7 , 4

7 , 5
7 , 6

7

}
, and chosen so as to preserve

supersymmetry. Requiring supersymmetry implies that the sum of the components of a vector
must add up to an integer [12]. Once the roots and the shift vectors are known, the Z7-invariant
subgroups of E8 is found by the following procedure.

If V denotes a Z7 shift vector acting on the root lattice P of group E8, then the set of root
vectors that survives the projection

e2π i(P ·V ) |P 〉 = |P 〉 , P ∈ P, (3.1)

constitutes the root vectors of a Z7-invariant subgroup H in E8. We denote by W the set of
120 positive root vectors of E8.

In the first step, we take the dot product between a shift V and each of the roots W i’s in
W . A root that satisfies V ·W i ∈ Z is said to have survived the shift. We denote by TV this
set of surviving roots, and by kV the number of surviving roots for a particular shift V :

kV : = |TV |. (3.2)

We consider all the 428 Z7 vectors and their permutations to find out all the possible values of
kV . We extensively use MathematicaTM and collect the values of kV and find that it can have
one of the following values:

kV ∈ {14, 15, 16, 21, 22, 23, 28, 30, 36, 37, 42, 63}. (3.3)

In the second step, we find all the possible subgroups HI ⊂ E8. We use the Dynkin
diagram technique and the subgroups are listed in table A1 in appendix A. We find the number
of positive roots kH for each one of these subgroups. These numbers give us indication of the
possible subgroups that equation (3.3) represents. For example, if the number of surviving
roots kV for a particular shift V is 14, these 14 roots might belong to one of the four subgroups

SO8 × SU 2
2 , SU5 × SU3 × SU2, SU5 × SU 4

2 , or SU 2
4 × SU 2

2 , (3.4)

as found in table A1.
The third step is required if the subgroup is not identified unambiguously already by the

values of kV : for each HI ⊂ E8, we compute m and r defined as

m := the number of SU(2) factors, if any, in HI ,

r := the rank of HI .
(3.5)

Table A1 in appendix A lists the values of m and r used to identify a subgroup of E8.
Finally, in the fourth step, we specify a procedure to determine the identifiers m and r

from the set of surviving roots found in the first step. This is shown by the following example.
Take the shift vector V = [

1
7 , 1

7 , 0, 2
7 , 0, 0, 3

7 , 0
]
, one of the permutations of

[
1
7 , 1

7 , 2
7 , 3

7 ,

0, 0, 0, 0
]
. The E8 roots that survive the shift are

TV :=⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0, 0, 0, 0, 1,−1, 0, 0], [1,−1, 0, 0, 0, 0, 0, 1], [1,−1, 1, 0, 0, 0, 0,−1],
[ − 1, 1, 0, 0,−1, 1, 0, 0], [0, 0,−1, 0, 1, 0, 0, 1], [0, 0, 0, 0, 1, 0, 0,−1],

[1,−1, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0,−1, 0, 1], [0, 0, 1, 0, 0,−1, 0,−1],
[0, 1,−1, 1,−1, 1,−1, 0], [−1, 0, 1,−1, 0, 0, 1, 0], [1,−1, 1, 0,−1, 0, 0, 0],
[ − 1, 1,−1, 0, 1,−1, 0, 1], [−1, 1, 0, 0, 1,−1, 0,−1], [0, 0,−1, 0, 0, 0, 0, 2]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

(3.6)
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Let zi, i = 1, 2, . . . , 15, denote these roots. We look for possible relations3 in the form
zi + zj = zk , and find the following:

5z2 + z14 = z1, z3 + z13 = z1, z3 + z15 = z2, (3.7a)

z5 + z9 = z1, z5 + z12 = z2, z6 + z8 = z1, (3.7b)

z6 + z12 = z3, z6 + z15 = z5, z7 + z8 = z2, (3.7c)

z7 + z9 = z3, z7 + z13 = z5, z7 + z14 = z6, (3.7d)

z9 + z15 = z8, z10 + z11 = z4, z12 + z13 = z8, (3.7e)

z12 + z14 = z9, z14 + z15 = z13. (3.7f )

The roots z7, z10, z11, z12, z14 and z15 cannot be expressed as a sum of any other of the roots
(3.6), which means that they correspond to six simple roots, whence the rank of the group
must be 6.

Since all 15 roots (3.6) appear in the system (3), each root is part of a root system larger
than {−zi, 0, zi}. Therefore, each SU(2) subgroup corresponding to any of the roots (3.6) is
a subgroup of a larger subgroup of E8, and the roots (3.6) represent no SU(2) factor subgroup
of E8. So, looking at the surviving roots we can define the variables m and r as

m := the number of roots which do not occur in any of the equations

of the type zi + zj = zk (in this example, m = 0),
(3.8)

r := the number of roots which do not occur on the right-hand side

of any of the equations of the type zi + zj = zk.

Proof. The justification for the agreement between the identifications (3.5) and (3.8) is simple:
note first that SU(2) is the unique Lie group to have the same number, one, of each of a Cartan
root, a positive (raising) root and a negative (lowering) root. As positive roots that are not
themselves sums of other positive roots are by definition simple, the one positive root within
an SU(2) factor subgroup of E8 clearly must be simple.

Each simple positive root has a corresponding negative and their commutator results in a
Cartan generator, thus jointly generating an SU(2) group. In particular, the number of simple
roots must then be equal to the rank of the considered subgroup H ⊂ E8. So, simple positive
roots that, within a TV , are neither sums of other positive roots nor occur as summands in any
of the positive roots, must in fact be separate SU(2) factors within the considered subgroup
H ⊂ E8.

In turn, simple positive roots that do occur as summands adding up to other positive roots
within TV must belong to bigger root systems, belonging to factors in H that contain SU(2),
but are bigger. Partitioning TV into such root sub-systems decomposes H into individual
factors. Within the finite list of subgroups of E8, it is then possible to identify each system
of surviving roots TV with the root system of the corresponding specific subgroup of E8 (see
appendix B). �

Using table A1, this unambiguously identifies the roots (3.6) as belonging to the group
SO8 × SU3. We employ this analysis in the construction of the MathematicaTM codes and
find the subgroups of E8 that are invariant under a Z7 shift listed in table B1.

3 A relation of the type zi + zj = zk corresponds to the commutator [Ezi , Ezj ] = Ezk . So, Ezi , Ezj and Ezk ,
together with two suitable Cartan generators and E−zi , E−zj , E−zk generate an SU(3) subgroup of E8. In particular,
if zk = zi + zj for some zi and zj, then zk is not a simple root.

6
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4. Four-dimensional models

There are 14 possible choices for G4 and including the case when E8 is unbroken, there are
15 possible groups for the upper world four-planes and 15 possible groups for the lower
world four-planes. At this moment there is no restriction on the choice of the upper world
gauge group and lower world gauge group, so in the limit x11 → 0, when the two worlds
fuse (for comparison with heterotic string compactification), we end up getting

(15+1
2

) = 120
possible groups on a four-plane. We look at one of these possibilities and investigate the
four-dimensional physics. Take for example E8 → SU5 × SU3 × SU2 × U1 breaking. The
branching4 rule is [16]

E8 → SU5 × SU5 → SU5 × SU3 × SU2 × U1 :

248 = (1, 24) ⊕ (24, 1) ⊕ (5, 10) ⊕ (5̄, 10) ⊕ (10, 5) ⊕ (10, 5̄)

= [(1, 1, 1)(0) ⊕ (1, 1, 3)(0) ⊕ (1, 3, 2)(−5) ⊕ (1, 3̄, 2)(5) ⊕ (1, 8, 1)(0)]

⊕ (24, 1, 1)(0) ⊕ [(5, 1, 1)(−6) ⊕ (5, 3, 1)(4) ⊕ (5, 3̄, 2)(−1)]

⊕ [(5̄, 1, 1)(6) ⊕ (5̄, 3̄, 1)(−4) ⊕ (5̄, 3, 2)(1)]

⊕ [(10, 1, 2)(3) ⊕ (10, 3, 1)(−2)] ⊕ [(10, 1, 2)(−3) ⊕ (10, 3̄, 1)(2)]

� (1, 1, 1)(0) ⊕ (1, 1, 3)(0) ⊕ (1, 3, 2)(−5) ⊕ (1, 8, 1)(0) ⊕ (24, 1, 1)(0) ⊕ (5, 1, 1)(−6)

⊕ (5, 3̄, 2)(−1) ⊕ (5, 3, 1)(4) ⊕ (10, 3, 1)(−2) ⊕ (10, 1, 2)(3). (4.1)

On a four-plane only the vector multiplets and the chiral multiplets survives, so at the end of
the branching we keep only the R part for the representations of the form R⊕ R̄. The part of
the surviving representations that contribute to the anomaly is

(1, 3, 2)(−5) ⊕ (5, 1, 1)(−6) ⊕ (5, 3̄, 2)(−1) ⊕ (5, 3, 1)(4) ⊕ (10, 3, 1)(−2) ⊕ (10, 1, 2)(3). (4.2)

To cancel the anomaly each of the following terms must vanish,

I (GI ) ≡
∑

i

∑
RI

n(RI )i qi I2(RI ), I (U1)GAUGE =
∑

i

Ni q
3
i , (4.3)

where GI are each of the group factor, n(RI )i are the multiplicity of each of the representation
RI in the ith set of fields, qi is the charge of each set of fields, I2(RI ) is the second index
of the representation RI and Ni is the total number of fields in each set. Note that all these
multiplets have a factor of 1

f
from the index theorem, where f is the number of five-planes

for the corresponding ZN orbifold. On a given four-plane the total anomaly turns out to be

I (SU5) = 1

f
(1(−6)I2(5) + 6(−1)I2(5) + 3(4)I2(5) + 3(−2)I2(10) + 2(3)I2(10))

= 1

f
(1(−6)·1 + 6(−1)·1 + 3(4)·1 + 3(−2)·3 + 2(3)·3) = 0.

I (SU3) = 1

f
(2(−5)I2(3) + 10(−1)I2(3̄) + 5(4)I2(3) + 10(−2)I2(3))

= 1

f
(2(−5)·1 + 10(−1)·1 + 5(4)·1 + 10(−2)·1) = 1

f
(−20) 
= 0. (4.4)

I (SU2) = 1

f
(3(−5)I2(2) + 15(−1)I2(2) + 10(3)I2(2))

= 1

f
(3(−5)·1 + 15(−1)·1 + 10(3)·1) = 0.

4 The double-headed arrow, �, denotes a projection to a subset.
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I (U1)GAUGE = 1

f
(6(−5)3 + 5(−6)3 + 30(−1)3 + 15(4)3 + 30(−2)3 + 20(3)3) 
= 0.

So there are gauge and U1 anomalies for this example. Of all the possible choices of
gauge groups in table B1, only three of them do not contribute to any anomaly. They are
E7 × U1, SO12 × U 2

1 and SO10 × SU2 × U 2
1 . The branching rules for these three groups are

the following.
(1) E8 → E7 × SU2 → E7 × U1:

248 = (1, 3) ⊕ (133, 1) ⊕ (56, 2)

= [
1(−1) ⊕ 1(0) ⊕ 1(1)

] ⊕ 133(0) ⊕ [
56(− 1

2 ) ⊕ 56( 1
2 )

]
. (4.5)

(2) E8 → SO16 → SO12 × SU2 × SU2 → SO12 × U 2
1 :

248 = 120 ⊕ 128

= [(66, 1, 1) ⊕ (12, 2, 2) ⊕ (1, 1, 3) ⊕ (1, 3, 1)] ⊕ [(32, 2, 1) ⊕ (32, 1, 2)]

= [
(66, 1)(0) ⊕ [(12, 2)(− 1

2 ) ⊕ (12, 2)( 1
2 )

] ⊕ [
(1, 1)(−1) ⊕ (1, 1)(0) ⊕ (1, 1)(1)

]
⊕ (1, 3)(0)

] ⊕ [
(32, 2)(0) ⊕ [

(32, 1)(− 1
2 ) ⊕ (32, 1)( 1

2 )

]]
= [

66(0)(0) ⊕ [[
12(− 1

2 )(− 1
2 ) ⊕ 12( 1

2 )(− 1
2 )

] ⊕ [
12(− 1

2 )( 1
2 ) ⊕ 12( 1

2 )( 1
2 )

]]
⊕ [

1(0)(−1) ⊕ 1(0)(0) ⊕ 1(0)(1)

] ⊕ [
1(−1)(0) ⊕ 1(0)(0) ⊕ 1(1)(0)

]]
⊕ [[

32(− 1
2 )(0) ⊕ 32( 1

2 )(0)

] ⊕ [
32(0)(− 1

2 ) ⊕ 32(0)( 1
2 )

]]
. (4.6)

(3) E8 → SO16 → SO10 × SU4 → SO10 × SU 2
2 × U1 → SO10 × SU2 × U 2

1 :

248 = 120 ⊕ 128

= [(45, 1) ⊕ (10, 6) ⊕ (1, 15)] ⊕ [(16, 4) ⊕ (16, 4̄)]

= [
(45, 1, 1)(0) ⊕ [(10, 1, 1)(2) ⊕ (10, 1, 1)(−2) ⊕ (10, 2, 2)(0)]

⊕ [(1, 1, 1)(0) ⊕ (1, 3, 1)(0) ⊕ (1, 1, 3)(0) ⊕ (1, 2, 2)(2) ⊕ (1, 2, 2)(−2)]
]

⊕ [
[(16, 2, 1)(1) ⊕ (16, 1, 2)(−1)] ⊕ [(16, 2, 1)(−1) ⊕ (16, 1, 2)(1)]

]
= [

(45, 1)(0)(0) ⊕ [(10, 1)(0)(2) ⊕ (10, 1)(0)(−2) ⊕ [
(10, 2)(− 1

2 )(0) ⊕ (10, 2)( 1
2 )(0)

]]
⊕ [

(1, 1)(0)(0) ⊕ (1, 3)(0)(0) ⊕ [(1, 1)(−1)(0) ⊕ (1, 1)(0)(0) ⊕ (1, 1)(1)(0)]

⊕ [
(1, 2)(− 1

2 )(2) ⊕ (1, 2)( 1
2 )(2)

] ⊕ [
(1, 2)(− 1

2 )(−2) ⊕ (1, 2)( 1
2 )(−2)

]]]
⊕ [[

(16, 2)(0)(1) ⊕ [(16, 1)(− 1
2 )(−1) ⊕ (16, 1)( 1

2 )(−1)]
]

⊕ [
(16, 2)(0)(−1) ⊕ [

(16, 1)(− 1
2 )(1) ⊕ (16, 1)( 1

2 )(1)

]]]
. (4.7)

However, the final massless contents of these choices are non-chiral. So, we look for a possible
solution to this problem. So far, we do not have any mechanism to cancel anomaly on a given
four-dimensional plane, which requires twisted states and possibly some contribution from
the five-planes. We now turn into these.

5. M-theory models from string theory orbifolds

We explained in the introduction how four-dimensional orbifold models constructed from
E8 × E8 heterotic string theory are related to those constructed in M-theory. In this section
we would like to emphasize the relationship a little further. In order to do that, we need to
consider the possible four-dimensional string compactifications on ‘our’ orbifolds. In [10,
17], Katsuki et al have listed all the possible gauge groups on a four-dimensional plane for
ZN orbifolds in general. For the Z7 orbifold there are 39 such models. They have also listed
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massless twisted and untwisted states for all the ZN orbifold models, except for Z8 and Z12

because there are too many massless states in those cases, and this number increases as one
goes to higher order orbifolds. However the U(1) charges of the matter representations were
omitted. These U(1) charges are necessary if one wants to relate the model with one in the
M-theory construction. We follow [18, 19] to calculate these charges.

5.1. Anomalous U(1) gauge symmetry

All the models listed in [10, 17] have at least one U(1) factor. As we will show, in any of these
models we can choose the U(1) basis in such a way that at most one U(1) factor is anomalous.
The presence of U(1) anomalies is allowed in this kind of orbifold theories as they can be
canceled by a four-dimensional version of the universal Green–Schwarz mechanism [9].

Let us take the anomalous gauge group,
∏

a Ga × U(1)A. The charge QA associated with
the anomalous U(1) factor is related to a constant δGS by Tr QA = 96π2

√
kAδGS. Here kA is

the level of U(1)A and the constant δGS has a unique value. For models with only one U(1)

factor the following universality relation is satisfied,

1

ka

Tr
Ga

T (R)QA = 1

3
Tr Q3

A = 1

24
Tr QA ≡ 8π2δGS, (5.1)

where 2T (R) is the index of the representation R and the charge QA has been rescaled so
that kA = 1. This is referred to as the universal GS relation. By forming suitable linear
combinations of more than 1 U(1) factor, it is always possible to change the basis so that at
most 1 U(1) factor is anomalous. The universal relation in that case is

1

ka

Tr
Ga

T (R)QA = Tr Q2
B QA = 1

3
Tr Q3

A = 1

24
Tr QA = 8π2δGS, (5.2)

where QB is the charge with respect to any of the non-anomalous U(1) factors.
To illustrate the above procedure we give an example: consider the model, E8 × E′

8 →
SU(8) × U(1)A × E6 × SU(2) × U(1)B . We use MathematicaTM to find out the untwisted
and twisted states along with their charges.

Untwisted states

(i) We find out the 248 roots of E8 from the following.

P I = [±1,±1, 0, 0, 0, 0, 0, 0] ≡ [±1,±1, 06], (5.3)

P I = [± 1
2 ,± 1

2 ,± 1
2 ,± 1

2 ,± 1
2 ,± 1

2 ,± 1
2 ,± 1

2

]
, (5.4)

where underline indicates the inclusion of all permutations, and one must select an even
number of minus signs in (5.4). We also include the eight Cartan roots, [0, 0, 0, 0,

0, 0, 0, 0].
(ii) Multiply these roots PI with the shift VI. For the example at hand, V I =

1
7 [1, 1, 1, 1, 1, 1, 1,−1] for the group SU(8) × U(1)A. Look for roots that give
P I ·V I ∈ Z. This gives us the untwisted states.

(iii) Look for a suitable U(1) basis. The general procedure is described below5.

A suitable U(1) basis
The E8 Kac–Moody algebra consists of the ∂XI and eiP I XI

operators, where PI are nonzero

roots of E8 and ∂XI corresponds to the Cartan parts. Now, the shift vector VI breaks the
E8 group to a gauge group, whose Kac–Moody algebra consists of ∂XI and eiP I XI

, where

5 Thanks to Tatsuo Kobayashi for explaining this.
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PI are the surviving roots satisfying P I ·V I ∈ Z. Suppose that the unbroken gauge group
is G7 × U(1), for some simple rank-7 subgroup G7 ⊂ E8. This U(1) corresponds to a
linear combination of ∂XI , i.e.,

∑
I aI ∂XI . These coefficients are fixed so that

∑
I aI ∂XI

commutes with the non-Abelian part, G7, implying that∑
I

aIP
I = 0. (5.5)

The procedure to fix a U(1) basis is essentially the same even when the unbroken gauge
group includes two or more U(1) factors. For an example, let us consider the case where
the unbroken gauge group is G6 × U(1)2. The two U(1) factors correspond to linear
combinations of ∂XI , i.e.,

∑
I a

(1)
I ∂XI and

∑
I a

(2)
I ∂XI . They should satisfy∑

I

a
(1)
I P I = 0,

∑
I

a
(2)
I P I = 0, (5.6)

for PI satisfying P I ·V I ∈ Z, and they should be orthogonal to each other, i.e.,∑
I

a
(1)
I a

(2)
I = 0. (5.7)

In the (a(1), a(2))-plane, there exists one degree of freedom to rotate the basis. If both
U(1) factors are anomaly-free, we can choose any basis. If one of the U(1) factors is
anomalous, we identify it. Finally, if both U(1) factors are anomalous, we rotate to a
basis wherein one U(1) is anomaly-free, leaving the other to be anomalous.

In this way, we find that the U(1) basis for the shift V I = 1
7 [1, 1, 1, 1, 1, 1, 1,−1] is

given by 7VI. Once the basis vector is fixed, the product of the basis vector with the surviving
PI gives the untwisted states and their charges as

(56)−1 ⊕ (28)−2 ⊕ (8̄)3. (5.8)

We do the same for the other E′
8 factor, where the shift is V I = 1

7 [1, 1, 1, 1, 1, 1, 0, 0], the
U(1) charge basis is again 7VI, and the gauge group is now E6 × SU(2) × U(1)B . We obtain
the untwisted states:

(27, 2)1 ⊕ (27, 1)2 ⊕ (1, 2)−3. (5.9)

Together, the SU(8)×U(1)A ×E6 ×SU(2)×U(1)B representation of the untwisted states is

(56, 1, 1)−1,0 ⊕ (28, 1, 1)−2,0 ⊕ (8̄, 1, 1)3,0 ⊕ (1, 27, 2)0,1 ⊕ (1, 27, 1)0,2 ⊕ (1, 1, 2)0,−3.

(5.10)

Twisted states

(i) Find the 248 roots of E8 from equations (5.3) and (5.4).
(ii) Multiply the shift VI with k, the twisted sector index. If any of the components

of k V I is outside [−3/7, 3/7], we simplify as follows: take for example V I =
1
7 [3, 3, 2, 2, 2, 2, 1,−1] and k = 4, which gives k V I = 1

7 [12, 12, 8, 8, 8, 8, 4,−4].
Now we simplify k V I by reducing each component of 7(k V I ) modulo 7, producing
k V I ∼= 1

7 [−2,−2, 1, 1, 1, 1,−3, 3} = : w.

(iii) Calculate the shifted momenta P̃ I = P I + w.
(iv) Do the same for the other E′

8 factor. Call this P̃ I ′
.

(v) Compute the momenta P̃ Î = (P̃ I , P̃ I ′
) and then

∑16
Î=1(P̃

Î )2. This gives a total of
248 × 248 values.

10
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(vi) Calculate
∑16

Î=1(P̃
Î )2 from the mass formula for the left moving twisted sectors (in the

light-cone gauge),

1

8
m2

L = 1

2

3∑
i=1

(
pi

L

)2
δk,0 +

1

2

16∑
Î=1

(P̃ Î )2 + N
(k)
L − 1 + c(k). (5.11)

The term N
(k)
L is the oscillator number and takes the fractional value which is multiple

of 1
N

, where N is the order of the orbifold group. For Z7 orbifold the zero-point energy
is the same for any twisted sector and is equal to c(k) = 2/7. The untwisted states
correspond to k = 0 and the momenta pi

L are associated with the compact coordinates
X

j

L, where j = 3, . . . , 8. For twisted states the term
∑

(pi
L)2 does not contribute to the

mass equation. Since the value of N
(k)
L is a multiple of 1

N
, we obtain N

(k)
L = 0, 1

7 , . . . , 6
7 .

So, from (5.11) we obtain

16∑
Î=1

(P̃ Î )2 = −2N
(k)
L +

10

7
. (5.12)

For the various possible values of N
(k)
L ,

16∑
Î=1

(P̃ Î )2 = 10

7
,

8

7
,

6

7
,

4

7
,

2

7
, 0,−2

7
. (5.13)

Since
∑16

Î=1(P̃
Î )2 is positive, the maximum and minimum values of

∑16
Î=1(P̃

Î )2 are 10
7

and 0, respectively. This gives
∑16

Î=1(P̃
Î )2 = 10

7 , 8
7 , 6

7 , 4
7 , 2

7 for 7N
(k)
L = 0, 1, 2, 3, 4,

respectively.

(vii) Now look for P̃ Î in step (v), which gives
∑16

Î=1(P̃
Î )2 = 10

7 , 8
7 , 6

7 , 4
7 or 2

7 .

(viii) Take the same U(1) basis as in the untwisted case and multiply it with the surviving P̃ Î .
This produces the twisted states and their charges in the k = 1, 2 and 4 sectors as follows:

k = 1 : 7(8̄; 1, 1)− 13
7 , 6

7
⊕ 7(1; 1, 2) 8

7 ,− 15
7

⊕ 35(1; 1, 1) 8
7 , 6

7
,

k = 2 : 7(8̄; 1, 1)− 5
7 , 12

7
⊕ 7(1; 1, 2) 16

7 ,− 9
7
⊕ 7(1; 1, 1) 16

7 , 12
7
, (5.14)

k = 4 : 7(8; 1, 2)− 3
7 , 3

7
.

Anomaly

For the group SU(8) × U(1)A × E6 × SU(2) × U(1)B the shift may be written as
V Î = (17,−1)(16, 02)/7. We have two charge basis vectors: V Î

A = (17,−1)(08) and
V Î

B = (08)(16, 02). From the charge basis vectors, we calculate the level of U(1) as

kQ = 2
16∑

Î=1

(V Î
Q)2. (5.15)

This gives kA = 16 and kB = 12. Note that there is no E6 representation in the twisted
sector, which tells us that U(1)B is anomalous. Using the representation index in [20, 16] we

11
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calculate the TrGa
T (R)QB , Tr QB , Tr Q3

B and Tr Q2
AQB as

Tr
SU8

T (R)QB = 7 × 1

2
× 6

7
+ 7 × 1

2
× 12

7
+ 14 × 1

2
× 3

7
= 12,

Tr
E6

T (R)QB = 2 × 6

2
× 1 + 1 × 6

2
× 2 = 12,

Tr
SU2

T (R)QB = 27 × 1

2
× 1 + 1 × 1

2
× (−3) + 7 × 1

2
×

(−15

7

)

+ 7 × 1

2
×

(−9

7

)
+ 56 × 1

2
× 3

7
= 12,

Tr QB = 54 + 54 − 6 + 186 = 288,

Tr Q3
B = 54 + 216 − 54 + 216 = 432,

Tr Q2
AQB = 192.

(5.16)

With these values, all the traces are related as

Tr
Ga

T (R)QB = 1
16 Tr Q2

AQB = 1
36 Tr Q3

B = 1
24 Tr QB = 12. (5.17)

We rescale the charge as QA → √
kA QA and QB → √

kB QB which gives the universal GS
relation

Tr
Ga

T (R)QB = Tr Q2
AQB = 1

3 Tr Q3
B = 1

24 Tr QB = 12. (5.18)

In this way it is possible to find all the charges of the twisted and untwisted matter content
in [10] and to calculate the universal GS relation, ensuring all models to be consistent and
anomaly free.

5.2. Four-dimensional M-theory models

In section 4, we found
(15+1

2

)
M-theory models. But all of them were either anomalous or free

of chiral fermions. In analogy with the string theory models, now we conclude that there are
39 four-dimensional M-theory models which are free of anomalies. Gratifyingly, they turn out
to be the same models as are listed in [10, 17]. If one of the gauge groups in table 6 of [10]
represents the symmetry group of the upper four-plane (figure 2) then the other one represents
the group on the lower four-plane. In the limit x11 → 0, the matter spectrum for a model is
given by the untwisted and twisted states in table 6 and table 23 of [10].

In the SU(8)×U(1)A ×E6 ×SU(2)×U(1)B example given in the previous section, the
untwisted states are represented by equation (5.10) and the twisted states are represented by
equation (5.14). This is an interesting model, in the k = 4 twisted sector the states are charged
with respect to the gauge groups of both the lower and the upper four-dimensional world, i.e.,
both SU8 and E6 × SU2, respectively.

Such states, which carry charges in both four-dimensional worlds, must be represented
by an extended object, which stretches from one world to the other. In this case, it means
that the seven (8, 1, 2)-states must be representable by an extended object (a suitable p-brane)
stretching along the x11 coordinate, with one ‘end’ constrained to one world, the other to the
other world. By the same argument, any state which must carry nonzero gauge charges with
respect to the gauge groups in both the ‘lower’ and the ‘upper’ world, must be represented by an
extended object, stretched along x11 from one world to the other. In effect, such models include
modes of interaction between two otherwise isolated four-dimensional worlds, separated by
the x11 coordinate.

12



J. Phys. A: Math. Theor. 42 (2009) 355209 M K Ahsan and T Hübsch

1 2 3 4 5 6 4 2

3

α0 α1 α2 α3 α4 α5 α6 α7

α8

Figure 3. Extended Dynkin diagram of E8. The numbers in the circles are the Kac labels. The
extended root is α0.

From table 23 of [10], we find that there are 10 models where this phenomenon occurs.
In our M-theory models, it is the five-planes that connect the two four-plane worlds, so these
twisted states must ‘live’ in the five-planes. This is the contribution from the five-planes that
we expected in section 2.2.

6. Four-dimensional gauge groups with one Wilson line

If we denote the lattice of the six-dimensional torus by �, then for the Z7 orbifold � must
be the SU7 lattice, which in turn implies that we can add only one Wilson line. For Z8 and
Z12 the number of Wilson lines depends on the number of lattice choices for �, which can be
found in [21]. These Wilson lines provide extra shifts and break the four-dimensional gauge
groups to smaller and more realistic groups such as SU3 × SU2 × U 5

1 .
In section 3 we have shown how to find a subgroup of E8 that survives a Z7 shift vector

V. There is an alternate way of identifying the surviving gauge group [22]. This is known
as the Dynkin diagram technique, originally proposed by Kac and Peterson [23]. In this
technique, one takes the extended Dynkin diagram E8 and looks for a redefined shift vector,
which satisfies the same condition as before, P ·V ∈ Z. This results in removing some circles
from the Dynkin diagram which gives the surviving subgroup. Herein, we follow the work of
[22].

The extended Dynkin diagram of E8 is shown in figure 3. The highest root θ of E8 is
given by

θ =
r∑

i=1

niα
i = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8, (6.1)

where αi , i = 1, . . . , 8, are the simple roots of E8, r is the rank and the coefficients ni are the
Kac labels. In the diagram, α0 is the negative of the highest root, α0 = −θ .

We expand the Z7 shift vector in the Dynkin basis {γi}, satisfying γi ·αj = δ
j

i ,

V = 1

N

r∑
i=1

siγi, (6.2)

where N is the order of the shift vector and si = N αi ·V . We define s0 as

s0 ≡ N(1 − θ ·V ) = N −
8∑

i=1

nisi, (6.3)

and define a Kac label for the simple root α0 as n0 = 1. We look for a set of integers sI,
where I = 0, . . . , 8, that satisfy

8∑
I=0

nI sI = N, sI � 0. (6.4)

For each nonzero value in the set sI, we remove the Ith circle from the extended Dynkin
diagram and read off the surviving group from the remaining circles in the diagram. Let
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α0 α3 α4 α5 α6

α8

α0 α3 α4 α5 α6

α8αSU2 αSO10

× ×
→

Figure 4. The extended Dynkin diagram of E8 with three dots removed is shown on the left. The
extended Dynkin diagrams of SU2 and SO10 are shown on the right.

G = G1 × G2 × · · · be the unbroken subgroup obtained in this way, where each Gx factor is a
simple group.

Our next step is to add a Wilson line which can be realized by a shift vector ‘a’. We
expand ‘a’ in terms of the E8’s fundamental weights as

a = 1

N

8∑
i=1

wiγi, (6.5)

where the set of integers wi � 0 satisfies a similar condition as sI in equation (6.4). We define
the highest root θGx = −αGx of the simple group Gx as

θGx =
∑
i∈Jx

n
Gx

i αi, (6.6)

where Jx is the set of indices i for each αi that constitutes the group Gx, which includes the
root α0 if it belongs to Gx. The coefficients n

Gx

i are the Kac labels for Gx. For each Gx we find
out the extended Dynkin diagram by adding the root αGx with the Kac label n

Gx

0 = 1. This is
similar to adding α0 in the previous step. For the simple group Gx that contains the root α0,
we define w0 � 0 as

w0 ≡ Nα0 · a = −
8∑

i=1

niwi, (6.7)

where ni are the Kac labels of E8, ni = {2, 3, 4, 5, 6, 4, 2, 3}. We also define the coefficients
w

Gx

0 as ∑
i∈Jx

n
Gx

i wi + w
Gx

0 = N. (6.8)

Our problem now reduces to finding the right set of integers that satisfy equation (6.8) and

8∑
I=0

nIwI = 0 (mod N), (6.9)

where nI = {n0, ni} = {1, ni}.
We illustrate this process by giving an example6. We take a group from table B1, say,

SO10 × SU2 × U 2
1 and look for its possible breaking with a Wilson line. One of the choices

for the coefficients sI that satisfies equation (6.4) and breaks E8 to SO10 × SU2 × U 2
1 is

[s0|si] = [0|11000010]. We can safely remove the roots α1, α2 and α7 from the extended
Dynkin diagram of E8, the resulting diagram is shown in figure 4. We add the roots αSO10 and
αSU2 and get the extended Dynkin diagram for SO10 and SU2, respectively.

6 In fact, we may use the Dynkin diagram technique to verify the list of all Z7-invariant subgroups of E8 as listed in
table B1, which we have found by the alternate, computational method described above.
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Table 2. Table for the breaking of SO10 × SU2 × U2
1 with one Wilson line; the U1 factors are

suppressed.

[ωi |ω0 ω
SU2
0 ω

SO10
0 ] Group [ωi |ω0 ω

SU2
0 ω

SO10
0 ] Group

[00000000|077] SO10 × SU2 Not possible SU3 × SU 3
2

Not possible SO10 [00001000|165] SU3 × SU 2
2

Not possible SO8 × SU2 [00010100|524] SU3 × SU2

[00200000|615] SO8 [00110100|163] SU3

[00600100|070] SU5 × SU2 Not Possible SU 5
2

[00000100|346] SU5 [00201000|073] SU 4
2

Not possible SU4 × SU 3
2 [00101000|434] SU 3

2

[00003001|070] SU4 × SU 2
2 [00111000|612] SU 2

2

[00010000|255] SU4 × SU2 [00111100|251] SU2

[00110000|524] SU4 Not possible U 8
1

The highest root of SO10 is (0, 1, 0, 0, 0) which is written as

θSO10 = 1α3 + 2α4 + 2α5 + 1α8 + 1α6, (6.10)

where α3 = (2,−1, 0, 0, 0), α4 = (−1, 2,−1, 0, 0), α5 = (0,−1, 2,−1,−1), α8 =
(0, 0,−1, 2, 0) and α6 = (0, 0,−1, 0, 2) are the simple roots of SO10. The Kac labels
are found from the metric tensors in table 7 of [16]. This gives n

SO10
i = {1, 2, 2, 1, 1}. For

SU2 group n
SU2
i = {1}. We look for coefficients in the form

[
ωi |ω0ω

SU2
0 ω

SO10
0

]
that satisfy the

following conditions

w0 + 2w1 + 3w2 + 4w3 + 5w4 + 6w5 + 4w6 + 2w7 + 3w8 = 0 (mod 7),

w
SO10
0 + w3 + 2w4 + 2w5 + w6 + w8 = 7, (6.11)

w
SU2
0 + w0 = 7.

We use MathematicaTM and find the possible breaking pattern of SO10 × SU2 × U 2
1 , shown

in table 2. In the table, ‘Not possible’ means that we could not find a solution to the
equation (6.11) that would result in the corresponding group which is a subgroup of
SO10 × SU2 × U 2

1 . It is possible to get grand-unifying groups, such as SO10 × U 3
1 or

SU5 × U 4
1 , and a standard model type gauge group, SU3 × SU2 × U 5

1 , with an additional shift
in the E8 lattice. However, there are redundancies in the final massless contents. Take for
example the E8 → SO10 × SU2 × U 2

1 → SU3 × SU2 × U 5
1 branching, with the U1 charges

omitted:

248 → 1(8, 1) ⊕ 1(1, 3) ⊕ 20(1, 2) ⊕ 15(3, 1) ⊕ 15(3̄, 1) ⊕ 6(3, 2) ⊕ 6(3̄, 2) ⊕ 35(1, 1).

(6.12)

After truncating the antichiral states, which affects only the multiplicity factors of some of
the states, the massless spectrum on any one of the seven four-planes within one ten-plane
(figure 2) is, somewhat formally:

248 � 1
7 [1(8, 1) ⊕ 1(1, 3) ⊕ 14(1, 2) ⊕ 15(3, 1) ⊕ 8(3̄, 1) ⊕ 6(3, 2) ⊕ 4(3̄, 2) ⊕ 27(1, 1)].

(6.13)

That is, equation (6.13) gives the contribution of the indicated massless states to the various
index theorems within any one of the seven four-planes. In fact, as the compact space spanned
by x5, . . . , x10 is unobservably small, the seven four-planes in the upper ten-plane effectively
coalesce into one four-dimensional world, with the particle content indicated within the square
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brackets of equation (6.13); the analogous statement holds for the seven four-planes within
the lower ten-plane (see figure 2).

Using the above procedure it is possible to find the symmetry breaking pattern of all the
groups listed in table B1 in appendix B.

7. Z8 and Z12 orbifold models

To continue the search for four-dimensional models by compactifying M-theory on higher order
orbifolds, one should take a look at the S1/Z2 × T 6/Z8 and S1/Z2 × T 6/Z12 orbifolds. The
action of the orbifold group elements on the compact coordinates is similar to that in table 2,
except that β4 in Z8, and β3, β4 elements in Z12, together with their α-twisted versions, have
additional fixed-point sets, which need to be counted. The network of intersecting fixed-point
planes now includes ten,- seven,- six,- five- and four-planes, similar to those found in [6, 7].
The Z8 and Z12 invariant groups that survive on a ten-plane can again be found using a
MathematicaTM program analogous to that used for the Z7 orbifold. As the first step, the list
of Z8 and Z12 shift vectors required for such computations has been constructed: there are 809
Z8 and 6309 Z12 vectors that satisfy the supersymmetry-preserving condition. This includes
order-2, -3 and -4 shifts, which respectively generate Z2, Z3 and Z4 subgroups of either Z8

or Z12.
We expect the massless spectra of four-dimensional models constructed from the

S1/Z2 × T 6/ZN orbifold, in the limit x11 → 0, to be equivalent to those obtained from
E8 × E8 string theory on T 6/ZN orbifolds [24]. In [10] all the ZN invariant subgroups have
been listed along with the untwisted states for each of these groups. The untwisted states are
obtained in a way similar to the Z7 orbifold as explained in section 5.1. For the twisted states
we have an additional restriction, which are selected by a GSO projection operator [19]. Since
the number of twisted states is too large, [10] lists only the untwisted states; the U(1) charges
are also omitted for brevity but are computed as done above.

For ZN orbifolds in string theory the shift vectors are chosen to preserve both the
supersymmetry and modular invariance restrictions. In M-theory, however, a precise analog
of the latter restriction is lacking. It therefore does not follow that the orbifold models listed
in [10] would turn out to be the same as those models constructed by the present method. This
problem is still open and needs to be explored. Considering the fact that Z7 orbifold models
from M-theory and string theory turn out to be the same, one would expect this also for Z8

and Z12 orbifold models.

8. Conclusion

We have examined the synergistic application of several related techniques used to determine
the massless spectrum of T 6/Z7 × S1/Z2 orbifolds in M-theory. This gives us two pairs of
four-plane worlds separated by a line segment. We have specified the gauge groups and matter
content of these four-dimensional worlds.

None of the models with only untwisted states contains a four-plane world in which the
massless spectrum would match the world in which we live. Typically, one finds no chiral
states in anomaly-free models, and/or the gauge groups do not resemble the standard model
or any of the GUT group.

Among models where anomalies are canceled by some twisted states, the four-dimensional
models are closely related to those obtained from compactifying E8×E8 heterotic string theory
on T 6/Z7 orbifold [10]. In the limit x11 → 0, the M-theory orbifold models should have the
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same massless spectra as the corresponding string theory orbifolds. We do not, at this stage,
know the details of this limit, foremost because M-theory—unlike string theory—does not
have a well-understood ‘fundamental’ description. However, our considerations do provide
the necessary twisted states to cancel the anomalies, which also introduces some chiral states
in the massless spectrum. In our models, five-dimensional planes connect pairs of four-plane
worlds, which are otherwise separated from each other. Since there are no anomalies on these
five-planes, possible additional gauge symmetries in these planes cannot be determined in
this way [6–8, 12]. In some of our models, some of the twisted states extend through these
five-planes; the other twisted states need not extend in this way and may be localized to the
respective four-plane worlds. This is an open problem and needs further insight.

Our calculations in finding the Z7 invariant subgroups of E8 heavily rely on
MathematicaTM programs, and the procedure can be applied for any other orbifold group
in general. The programming aspects of the relevant MathematicaTM code will be discussed
in a separate report. One might think that orbifolding with higher order groups, such as Z8 or
Z12 would give us more realistic and smaller groups. This much is indeed true, but the number
of twisted states in that case grows too fast for realistic application [10]; these orbifolds do not
appear to be viable as potential candidates to relate M-theory with the real world. However,
this is just an assumption, a complete calculation is necessary to arrive at such statement.
Initially we started our research with ZN orbifold in mind and we have partially worked on
Z8 and Z12. Getting the untwisted states for any of these orbifolds was easy, but for the
twisted states we had to rely on string theory. Even though we have a general procedure (in
principle) to find out the twisted states, practically the calculation needs some computational
tools. As presently implemented, our MathematicaTM code for finding the twisted states has a
significant limitation: it works for any string theory models with up to two U(1) factors. The
obvious need for generalizations in this direction provides goals for further research.

We have used Wilson lines to break the four-dimensional gauge group to a more realistic
standard-like model. The example we have presented gives the gauge groups on one of the
upper or lower four-plane worlds. For a complete list of models, we need to find the symmetry
breaking on the opposite four-plane world, take the x11 → 0 limit, calculate the anomalies,
and ensure their cancellation. Although this leads to a plethora of models, the symmetry
groups on the four-planes are much smaller than those obtained without employing Wilson
lines.

Finally, there are mechanisms in string theory to break the gauge symmetry in a way that
reduces the rank of the gauge group [25–27]. The precise analog of this mechanism lacks in
the M-theory context. From the above indications however, one would expect an M-theory
mechanism to exist, such that its x11 → 0 limit (with the more detailed dynamics taken into
account), is that of [25–27]. This remains an open question.
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Appendix A. Subgroups of E8

We find out all the subgroups of E8 using the Dynkin diagram [28]. The procedure is to remove
circles in all possible ways from the extended Dynkin diagram and read off the subgroup from
the remaining circles. In this way, we get a total of 99 subgroups of E8 given in table A1.
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Table A1. All the subgroups of E8 and the values of the identifiers. The entries under the headings
k, m and r are defined in equations (3.2) and (3.5), respectively. Only the subgroups labeled by a
check-mark in the ‘o’ column may occur in our Z7-orbifold models.

Subgroups k m r o Subgroups k m r o

1 E8 120 0 8 51 SO8 × SU 2
2 14 2 6 �

2 E7 × SU2 64 1 8 52 SU5 × SU3 × SU2 14 1 7 �
3 E7 63 0 7 � 53 SU5 × SU 4

2 14 4 8 �
4 SO16 56 0 8 54 SU 2

4 × SU 2
2 14 2 8 �

5 SO14 × SU2 43 1 8 55 SO8 × SU2 13 1 5
6 SO14 42 0 7 � 56 SU5 × SU3 13 0 6
7 E6 × SU3 39 0 8 57 SU5 × SU 3

2 13 3 7
8 E6 × SU 2

2 38 2 8 58 SU 2
4 × SU2 13 1 7

9 E6 × SU2 37 1 7 � 59 SU4 × SU 2
3 × SU2 13 1 8

10 E6 36 0 6 � 60 SO8 12 0 4
11 SU9 36 0 8 � 61 SU5 × SU 2

2 12 2 6
12 SO12 × SU3 33 0 8 62 SU 2

4 12 0 6
13 SO12 × SU 2

2 32 2 8 63 SU4 × SU 2
3 12 0 7

14 SO12 × SU2 31 1 7 64 SU4 × SU3 × SU 3
2 12 3 8

15 SO12 30 0 6 � 65 SU 4
3 12 0 8

16 SU8 × SU2 29 1 8 66 SU5 × SU2 11 1 5
17 SU8 28 0 7 � 67 SU4 × SU3 × SU 2

2 11 2 7

18 SO10 × SU4 26 0 8 68 SU4 × SU 5
2 11 5 8

19 SO10 × SU3 × SU2 24 1 8 69 SU 3
3 × SU 2

2 11 2 8
20 SU7 × SU3 24 0 8 70 SU5 10 0 4
21 SO10 × SU3 23 0 7 � 71 SU4 × SU3 × SU2 10 1 6
22 SO10 × SU 3

2 23 3 8 � 72 SU4 × SU 4
2 10 4 7

23 SU7 × SU 2
2 23 2 8 � 73 SU 3

3 × SU2 10 1 7
24 SO10 × SU 2

2 22 2 7 � 74 SU 2
3 × SU 4

2 10 4 8
25 SO8 × SU5 22 0 8 � 75 SU4 × SU3 9 0 5
26 SU7 × SU2 22 1 7 � 76 SU4 × SU 3

2 9 3 6
27 SO10 × SU2 21 1 6 � 77 SU 3

3 9 0 6
28 SU7 21 0 6 � 78 SU 2

3 × SU 3
2 9 3 7

29 SU6 × SU4 21 0 8 � 79 SU3 × SU 6
2 9 6 8

30 SO10 20 0 5 80 SU4 × SU 2
2 8 2 5

31 SU 2
5 20 0 8 81 SU 2

3 × SU 2
2 8 2 6

32 SO8 × SU4 × SU2 19 1 8 82 SU3 × SU 5
2 8 5 7

33 SU6 × SU3 × SU2 19 1 8 83 SU 8
2 8 8 8

34 SO8 × SU4 18 0 7 84 SU4 × SU2 7 1 4
35 SO8 × SU 2

3 18 0 8 85 SU 2
3 × SU2 7 1 5

36 SU6 × SU3 18 0 7 86 SU3 × SU 4
2 7 4 6

37 SU6 × SU 3
2 18 3 8 87 SU 7

2 7 7 7
38 SO8 × SU3 × SU 2

2 17 2 8 88 SU4 6 0 3
39 SU6 × SU 2

2 17 2 7 89 SU 2
3 6 0 4

40 SU5 × SU4 × SU2 17 1 8 90 SU3 × SU 3
2 6 3 5

41 SO8 × SU3 × SU2 16 1 7 � 91 SU 6
2 6 6 6

42 SO8 × SU 4
2 16 4 8 � 92 SU3 × SU 2

2 5 2 4
43 SU6 × SU2 16 1 6 � 93 SU 5

2 5 5 5
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Table A1. (Continued.)

Subgroups k m r o Subgroups k m r o

44 SU5 × SU4 16 0 7 � 94 SU3 × SU2 4 1 3
45 SU5 × SU 2

3 16 0 8 � 95 SU 4
2 4 4 4

46 SO8 × SU3 15 0 6 � 96 SU3 3 0 2
47 SO8 × SU 3

2 15 3 7 � 97 SU 3
2 3 3 3

48 SU6 15 0 5 � 98 SU 2
2 2 2 2

49 SU5 × SU3 × SU 2
2 15 2 8 � 99 SU2 1 1 1

50 SU 2
4 × SU3 15 0 8 � 100 U 8

1 0 0 8

Appendix B. Z7-invariant subgroups of E8 and generalizations

Among the subgroups of E8, we are only interested in those that are marked with a check in
column ‘o’ of table A1. These are the possible candidates as Z7 invariant subgroups. We
arrive at this conclusion by finding all the values of kV (3.3), each of which is the number of
E8 roots that satisfy the condition P I ·V I ∈ Z for a given shift vector VI, with VI ranging over
all Z7 shift vectors. This narrows down our choices to 30 subgroups of E8.

Next, we calculate the values of m (the number of SU2 factors in a group) for all of these
choices, manually from table A1. If k and m do not specify the group we find the values of r
(rank of a group), also manually, from the table.

Finally, we use MathematicaTM to calculate the values of the identifiers k, m and r from
the surviving roots of E8 and compare them with the values in table A1 to determine the Z7

invariant subgroups of E8. This reduces our choices to 14 subgroups only (see table B1).

Table B1. Subgroups of E8 invariant under Z7 shifts.

Subgroup Subgroup Subgroup Subgroup

1 E7 5 SO12 9 SU8 13 SU5 × SU4

2 E6 × SU2 6 SO10 × SU3 10 SU7 × SU2 14 SU5 × SU3 × SU2

3 E6 7 SO10 × SU2 11 SU7

4 SO14 8 SO8 × SU3 12 SU6 × SU2

A closing remark. When considering higher-order orbifolds, the above identifiers, k,m, r

will not identify the subgroups uniquely. However, the counting of the SU(2) factors can be
generalized in a very simple way as follows. The SU(n) groups are uniquely characterized
by the fact that they have

(
n

2

)
positive roots that form a Pascal triangle:

Eα1+α2+···+αn−1

· · · · · · · · ·
· · · · · · · · · · · ·

Eα1+α2 Eα2+α3 · · · Eαn−2+αn−1

Eα1 Eα2 Eα3 · · · Eαn−2 Eαn−1 ,

(B.1)

where Eαi+αj = [Eαi , Eαj ], etc. This implies an analogous system of relations for the vectors
zi, to be found among the relations such as equations(3). One then first identifies all the SU(2)

sub-systems in this way, and then all other SU(n) factors, increasing n incrementally, one by
one, from n = 3 and until the subgroup of E8 has been identified. The corresponding number
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of SU(n) factors may then be labeled mn, where m2 is the m as defined in equations (3.5)
and (3.8).

The special treatment of the SU(n) subgroups was simply for illustration purposes;
other Lie groups also have characteristic positive root systems, encoding the correspondingly
characteristic commutation relations among the positive roots. The SU(2) subgroup factors
remain, of course, the simplest to find.

In general then, for any system of �-invariant roots zi, we find the complete system
of ternary relations such as equations (3). Within this system, we identify a sub-system of
relations as corresponding to the characteristic commutation relations of a Lie group H. This
identifies H as a factor in the maximal �-invariant subgroup of E8.
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